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The “Task” of human-centered NLP

age
gender
personality
expertise
beliefs

Most NLP Tasks. E.g. Ainclude extra-linguistics?

e POS Tagging e Additive Inclusion

e Document Classification ) C

e Sentiment Analysis e Adaptive Extralinguistics

e Stance Detection o Adapting Embeddings
e Mental Health Risk Assessment o Adapting Models

[ J

(language modeling, QA, ... ¢ Correcting for bias
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Problem

Natural language is written by people.

People have different beliefs, backgrounds, styles,
vocabularies, preferences, knowledge, personalities, ...

Practical Implication:

Our NLP models are biased
Sometimes our predictions are invalid

Put language in the context of the person who wrote it
=> Greater Accuracy
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Human Factor

g if language to change depending

0 called “compositional”)
mdividual versus old individual)

What are human “factors”?

Additive: Include direct effect of human factor on outcome.
(e.g. age and distinguishing PTSD from Depression)

Bias Correction: Optimize so as not to pick up on
unwanted relationships.

(e.g. image captioner label pictures of men in kitchen as women)



Human Factors

--- Any attribute, represented as a continuous or discrete variable, of the humans
generating the natural language.

E.g.
e Gender
e Age
e Personality
e Ethnicity
e Socio-economic status
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Adaptation

typically requires putting people into discrete bins



“most latent variables of interest to psychiatrists and personality

and clinical psychologists are dimensional [continuous]”
(Haslam et al., 2012)
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Our Method: Continuous Adaptation

User Train Transformed
Factors Instances Labels Instances Labels

Learning
Continuous
_>

Adaptation

Gender Score Features QOriginal Gender Copy
-2 X > X compose(-.2, X)

(Lynn et al., 2017)
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Replicate features for each factor:

A compositional function ¢ combines d user
factor scores f,, 4 with original feature values x:

(I)(X? u) = <X? C(fU,17 X)a C(fu,Qa X)a T 7C(fu,d7 X)>

User  Factor Augmented Instance

Classes O (x,u)
User 1 Fi (x,%,0,0,---,0)
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Main Results

Adaptation improves over unadapted baselines (Lynn et al., 2017)

Latent
No (User

Task Metric | Adaptation Gender Personality Embed)
Stance F1 649| 65.1(+0.2) 66.3(+1.4) 67.9(+3.0)
Sarcasm | F1 739| 751(+1.2) 75.6(+1.7) 77.3(+3.4)
Sentiment | Acc. 60.6 61.0 (+0.4) 61.2 (+0.6) 60.7 (+0.1)
PP-Attach | Acc. 71.0 70.7 (-0.3) 70.2 (-0.8) 70.8 (-0.2)
HON Acc. 91.7] 91.9(+0.2) 91.2 (-0.5) 90.9 (-0.8)




Example: How Adaptation Helps
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Problem

User factors are not always available.



Solution: User Factor Inference

past tweets
Niranjan @b_niranjan - Sep 2 v .
There must be a word for trending #hashtags that you know you will regret if you > I nfe rre d fa Cto rs
click. s there?
i s Known
iranjan @b_niranjan - Aug 31 v
Passwords spiral: Forget password for the acnt you use twice a year. Ask for Ag e (S ap et al. 2014 )
reset';I .Can.‘t us(; Erewoug Crtja\lte3 a; new one to forget later. Gender ( S3 D et al. 201 4)
iranjan @b_niranjan - Ju v i
Thrilled to hear @acl2017's diversity efforts as the first thing in the conference. Pe rsona I |ty ( Pa rk et d I . 2 O 1 5 )
0 0 01 B8 Latent
User Embeddings
(Kulkarni et al. 2017)
Word2Vec

TF-IDF



Backeround Size

Using more background tweets to infer factors produces larger gains

personality (cont) user embed (cont)
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Example 1: Individual Heart Disease

Age predicts
|
affects |
|
\J
: )
predicts

Language



Example 2: Twitter Language + Socioeconomics

zumba gym
vistasession
> training
laying class trainer
wake head personal
bouts eep basicpotty

layin sessionsintense

edlaid workout

dYrest
‘=-oyd pillow ha

hah
i hahahahh?l}e
E

awake . jk
- 'djh 2313

vaIIeY ;p:p:

lakepark Fnsbme

trailhik hahahaha
g n cave




Additive (Residualized Control)
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Additive (Residualized Control)

Challenges:

High-dimensional,
sparse, and noisy.

™
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Additive (Residualized Control)

Effectively use both low dimensional control features and
high-dimensional, noisy language features:

1. Train a control model using the control values
2.Calculate the residual error and consider it as the new label

3. Train a language model over the new labels



Additive (Residualized Control)

Residualize control (additive model):

Label
|
Extra-linguistics 4[ Predictive Analytics }\
Error (+)— Prediction
l
Language [Language Model
(Zamani et al., EACL 2017) Adaptive model:

Language [L] Label

| |

[e1.L,e2.L, ...,em.L] A[Predictive Model }— Prediction

Extra-linguistics [e1, e2, ..., em]




Additive (Residualized Control)

Effectively use both low dimensional control features and
high-dimensional, noisy language features:

1. Train a control model using the control values
2.Calculate the residual error and consider it as the new label

3. Train a language model over the new labels



Model:

Y=ax,+ Bx, +y

Both learn the same linear model above, but
* Different learning algorithms per variable type.
* Different penalization methods



Residualized Control Model

Control Mode Language Model

9.

Y=« X Ieontrol T+

TTOT t RO /
kb | X Tlanguage 2 2 .‘ﬁ + A

)’ + A=-0.7

Leontrol Llanguage

2 3 LD Y= X Zeontrol + Ve € =7 X Tlanguage + A
Feontrol | a=1,=0 y=03,A=-0.7

Zamani M, Schwartz HA. Using Twitter Language to Predict the Real Estate Market. EACL 2017. 2017 Apr 3:28.
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Combining Adaptive and Additive

Two Goals:

adapt to given human attributes
(user factor adaptation,
Lynn, Balasubramanian, Son, Kulkarni & Schwartz,
EMNLP 2017)

predict beyond given attributes
(residualized control;, Zamani & Schwartz, EACL 2017)



Solution: Residualized Factor Adaptation
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Lang.

Controls  Added-
Only Controls

Heart Dis 0.585 0.514 0.608
Suicide 0.414 0.307 0.431
Poor Health 0.602 0.609 0.641
Life Satis. 0.209 0.329 0.335

Avg. 0453 0440  0.503




Lang. All Factors

Controls  Added- Res-
Only Controls  Control

Heart Dis 0.585 0.514 0.608 0.628
Suicide 0.414 0.307 0.431 0.460
Poor Health 0.602 0.609 0.641 0.661
Life Satis. 0.209 0.329 0.335 0.372

Avg. 0.453 0.440 0.503 0.530




Lang. All Factors
Controls  Added- Res- A
Only Controls ~ Control
Heart Dis 0.585 0.514 0.608 0.628 0.635
Suicide 0.414 0.307 0.431 0.460 0.494
Poor Health 0.602 0.609 0.641 0.661 0.674
Life Satis. 0.209 0.329 0.335 0.372 0.352
Avg. 0.453 0.440 0.503 0.530 0.539




Lang. All Factors
Controls  Added- Res-
Only Controls ~ Control 2 =

Heart Dis 0.585 0.608 0.628
Suicide 0414 0.431
Poor Health 0.602 0.609 0.641
Life Satis. 0.329 0.335

IN73 0.453 0.440 0.503




Lang. All Factors
Controls  Added- Res-
Only Controls  Control Z RiA
Heart Dis 0.585 0.514 0.608 0.628 0.635 0.655
Suicide 0.414 0.307 0.431 0.460 0.494 0.510
Poor Health 0.602 0.609 0.641 0.661 0.674 0.682
Life Satis. 0.209 0.329 0.335 0.372 0.352 0.396
Avg. 0.453 0.440 0.503 0.530 0.539 0.560

variance explained (R?)



Implications
a. Data is inherently multi-level: person-document
b. Often need control for “already-available” attributes
c. Linguistic features interact with human attributes

d. Language also has longitudinal context



Differential Language Analysis

Input:

Linguistic features

Human or community attribute
Output:

Features distinguishing attribute

Goal: Data-driven insights about an attribute



E.g. Words distinguishing communities with increases in real estate prices.
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Differential Language Analysis

Input:

Linguistic features

Human or community attribute
Output:

Features distinguishing attribute

Goal: Data-driven insights about an attribute



Differential Language Analysis

Volunteer Data

social media gender personality 3) Visualization
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Differential Language Analysis

Methods of Correlation Analysis: > o (@i — ) (yi — )

. \/Z;".l—l(xi — z)? \/Z?—l(yi —9)

e Pearson Product-Moment Correlation
Limitation: Doesn’t handle controls
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Differential Language Analysis

Methods of Correlation Analysis: 2io (@i — ) (3 — 9)
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Differential Language Analysis

Methods of Correlation Analysis: 2io (@i — ) (3 — 9)

_ noo )2
e Pearson Product-Moment Correlation \/Z' 1 (@i — ) \/Z%—l(yl y)
Limitation: Doesn’t handle controls

e Standardized Multivariate Linear Regression
Fitthe model: Y — dO +.(11 + 0)2 2 T ... T D)mel + €
Option 1: Gradient Descent:
J=Y (v-y) --“Sum of Squares” Error 1 "
J(w) nitia

Option 2: Matrix model: Y = X8 +¢ weiht
Matrix Computation Solution:
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Differential Language Analysis

Methods of “Correlation” Analysis for binary outcomes:

e Logistic Regression over Standardized variables

® OddS Ratio countA("horrible")

NA
countA("horrible")
NA

1

" countB("horrible")
NB
countB("horrible")
NB

1

(Monroe et al., 2010; Jurafsky, 2017)



Differential Language Analysis

Methods of “Correlation” Analysis for binary outcomes:

e Logistic Regression over Standardized variables

® OddS Ratio countA("horrible")

NA
countA("horrible") ) )
1 § NA countA("horrible") countB("horrible")
) NA NB
m log (1 countA("horrible") ) - log (1 countB("horrible") )
NA NB

" countB("horrible")

NB — countA("horrible”) countB("horrible”)

H— = g (A ) (comtpChomitie) )

countB("horrible") NA—countA(“horrible”) NB—countB(“horrible”)
NB

1

(Monroe et al., 2010; Jurafsky, 2017)
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Methods of “Correlation” Analysis for binary outcomes:

e Logistic Regression over Standardized variables

( countA("horrible”) )_ ( countB("horrible”) )
NA—countA("horrible") NB—countB(“horrible”)

e (dds Ratio using Informative Dirichlet Prior

e, yi+ a v+ a
JS_ i log( [' w l‘w )_ log . w ;v
n'+ ag = (Yt @) nt + ag — (y,+ ay)

(Monroe et al., 2010; Jurafsky, 2017)



Differential Language Analysis

Methods of “Correlation” Analysis for binary outcomes:

e Logistic Regression over Standardized variables

( countA("horrible”) )_ ( countB("horrible”) )
g NA—countA("horrible") NB—countB(“horrible”)

e (dds Ratio using Informative Dirichlet Prior

ey [+ a J 4 |a
6£ i log( N w )_ log( N i )

ni { a0 |- OnH{aw) nf H o | OiH{aw)

(Monroe et al., 2010; Jurafsky, 2017)



Differential Language Analysis

Methods of “Correlation” Analysis for binary outcomes:

e Logistic Regression over Standardized variables

( countA("horrible”) )_ ( countB("horrible”) )
NA—countA("horrible”) NB—countB(“horrible")

e 0dds Ratio using Informative Dirichlet Prior '’

Bayesian term for “smoothing”: accounts for uncertainty as a

function of less events (i.e. words observed less) by integrating
“prior” beliefs mathematically.

(Monroe et al., 2010; Jurafsky, 2017)



Differential Language Analysis

Methods of “Correlation” Analysis for binary outcomes:

e Logistic Regression over Standardized variables

( countA("horrible”) )_ ( countB("horrible”) )
NA—countA("horrible”) NB—countB(“horrible")

e 0dds Ratio using Informative Dirichlet Prior '’

Bayesian term for “smoothing”: accounts for uncertainty as a

function of less events (i.e. words observed less) by integrating
“prior” beliefs mathematically.
“Informative”: the prior is based on past evidence. Here, the
total frequency of the word.

(Monroe et al., 2010; Jurafsky, 2017)




Differential Language Analysis

Methods of “Correlation” Analysis for binary outcomes:

e Logistic Regression over Standardized variables

( countA("horrible”) )_ ( countB("horrible”) )
NA—countA(“horrible”) NB—countB(“horrible”)

e (dds Ratio using Informative Dirichlet Prior

i J
a(i=j) _ Yw + @y Yo + Ay
6w —log(i+ s (L o )—log(j . j )
n ag — (Yt ay) nt + ag — (y,+ ay)

(n' is thesize of corpus i, n’/ isthe size of corpusj, 3, is the count of word w in corpus i, }gf is the count of word w in corpus j,
a, is the size of the background corpus, and «,, is the count of word w in the background corpus.)

2 (=7)-Y
o (SW )~ i +—
Ywt @y y, + a,

* Final statistic for a word: z-score of its log-odds-ratio:
i

(Monroe et al., 2010; Jurafsky, 2017) o? (SS"")



Ethics in NLP

Types of bias in NLP tasks:

e Predictive Bias: Predicted distribution given A,
are dissimilar from ideal distribution given A
o Selection bias
o Label bias
o Over-amplification

Work in progres; Hovy et al., 2019



Ethics in NLP

Types of bias in NLP tasks:

e Predictive Bias: Predicted distribution given A,

Source: Model-Side

features | N, | outcomes
) > | , ‘ 7
Sourcee Vv source
L : - ?

over-amplification selection bias
The model discriminates on The sample of observations
a given human attribute themselves are not representative
beyond its ideal base-rate. of the application population.

Target:

features

Application-Side

outcomes
predict | ¥

target

label bias

Biased annotations, interaction,
or latent bias from past

classifications.
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Ethics in NLP

Types of bias in NLP tasks:

E.g. Coreference resolution: connecting entities to references (i.e. pronouns).

“The doctor told Mary that she had run some blood tests.”

e Semantic Bias: Representations of meaning store demographic associations.

Work in progres; Hovy et al., 2019
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Ethics in NLP

Privacy

e Risk Categories:
o Revealing unintended private information
o Targeted persuasion
e Mitigation strategies:
o Informed consent -- let participants know
o Do not share / secure storage
o Federated learning -- separate and obfuscate to the point of preserving
privacy
o Transparency in information targeting

“You are being shown this ad because ...”



Ethics in NLP

Human Subjects Research

Observational versus Interventional

(The Belmount Report, 1979)

(i) Distinction of research from practice.

(i) Risk-Benefit criteria

(iii) Appropriate selection of human subjects for participation in research
(iv) Informed consent in various research settings.



